How To Play Keno
In general the easier a game is to understand the greater the house advantage, and keno is a perfect example of this. Played in a lounge or at your restaurant table, keno involves the player choosing from 1 to 15 (sometimes 20) numbers from 1 to 80. Every five minutes or so the casino will choose 20 numbers ranging from 1 to 80. If enough of your chosen numbers match those drawn by the casino then you will win, depending on exactly how many match and the payoff table at your particular casino.
While the payoff tables will vary from one casino to another the expected return seems to always range from 70 to 80 cents per dollar bet, making keno among the worst bets in the casino. Many states outside Nevada offer keno as an alternative to lottery tickets. While I can’t speak for every state Maryland keno has an expected return of about 50 cents per dollar bet. I believe other state run keno to be just as bad.
Below are 15 tables, according to the number of numbers chosen, and the probability of matching any given number, the payoff table at the Atlantic City Tropicana, the contribution toward the expected return, and the total expected return for all possible matches. Following the tables is an explanation of how the probabilities were calculated.
Tables
Pick 1
|
Catches |
Pays |
Probability |
Return |
0 |
0 |
0.75000000000000 |
0.00000000000000 |
1 |
3 |
0.25000000000000 |
0.75000000000000 |
Total |
|
1.00000000000000 |
0.75000000000000 |
|
Pick 2
|
Catches |
Pays |
Probability |
Return |
0 |
0 |
0.56012658227848 |
0.00000000000000 |
1 |
0 |
0.37974683544304 |
0.00000000000000 |
2 |
12 |
0.06012658227848 |
0.72151898734177 |
Total |
|
1.00000000000000 |
0.72151898734177 |
|
Pick 3
|
Catches |
Pays |
Probability |
Return |
0 |
0 |
0.41650438169426 |
0.00000000000000 |
1 |
0 |
0.43086660175268 |
0.00000000000000 |
2 |
1 |
0.13875365141188 |
0.13875365141188 |
3 |
43 |
0.01387536514119 |
0.59664070107108 |
Total |
|
1.00000000000000 |
0.73539435248296 |
|
Pick 4
|
Catches |
Pays |
Probability |
Return |
0 |
0 |
0.30832142541003 |
0.00000000000000 |
1 |
0 |
0.43273182513689 |
0.00000000000000 |
2 |
1 |
0.21263546580002 |
0.21263546580002 |
3 |
3 |
0.04324789134916 |
0.12974367404747 |
4 |
130 |
0.00306339230390 |
0.39824099950682 |
Total |
|
1.00000000000000 |
0.74062013935432 |
|
Pick 5
|
Catches |
Pays |
Probability |
Return |
0 |
0 |
0.22718420819687 |
0.00000000000000 |
1 |
0 |
0.40568608606583 |
0.00000000000000 |
2 |
0 |
0.27045739071056 |
0.00000000000000 |
3 |
1 |
0.08393505228948 |
0.08393505228948 |
4 |
10 |
0.01209233804171 |
0.12092338041705 |
5 |
800 |
0.00064492469556 |
0.51593975644609 |
Total |
|
1.00000000000000 |
0.72079818915262 |
|
Pick 6
|
Catches |
Pays |
Probability |
Return |
0 |
0 |
0.16660175267770 |
0.00000000000000 |
1 |
0 |
0.36349473311499 |
0.00000000000000 |
2 |
0 |
0.30832142541003 |
0.00000000000000 |
3 |
1 |
0.12981954754107 |
0.12981954754107 |
4 |
4 |
0.02853791777842 |
0.11415167111370 |
5 |
95 |
0.00309563853868 |
0.29408566117427 |
6 |
1500 |
0.00012898493911 |
0.19347740866728 |
Total |
|
1.00000000000000 |
0.73153428849631 |
|
Pick 7
|
Catches |
Pays |
Probability |
Return |
0 |
0 |
0.12157425195400 |
0.00000000000000 |
1 |
0 |
0.31519250506592 |
0.00000000000000 |
2 |
0 |
0.32665405070468 |
0.00000000000000 |
3 |
0 |
0.17499324144894 |
0.00000000000000 |
4 |
1 |
0.05219096674793 |
0.05219096674793 |
5 |
25 |
0.00863850484104 |
0.21596262102591 |
6 |
350 |
0.00073207668144 |
0.25622683850532 |
7 |
8000 |
0.00002440255605 |
0.19522044838501 |
Total |
|
1.00000000000000 |
0.71960087466417 |
|
Pick 8
|
Catches |
Pays |
Probability |
Return |
0 |
0 |
0.08826623772003 |
0.00000000000000 |
1 |
0 |
0.26646411387178 |
0.00000000000000 |
2 |
0 |
0.32814562171247 |
0.00000000000000 |
3 |
0 |
0.21478622512089 |
0.00000000000000 |
4 |
0 |
0.08150370149677 |
0.00000000000000 |
5 |
9 |
0.01830258559927 |
0.16472327039346 |
6 |
90 |
0.00236671365508 |
0.21300422895706 |
7 |
1500 |
0.00016045516306 |
0.24068274458425 |
8 |
25000 |
0.00000434566067 |
0.10864151665261 |
Total |
|
1.00000000000000 |
0.72705176058740 |
|
Pick 9
|
Catches |
Pays |
Probability |
Return |
0 |
0 |
0.06374783835335 |
0.00000000000000 |
1 |
0 |
0.22066559430007 |
0.00000000000000 |
2 |
0 |
0.31642613522274 |
0.00000000000000 |
3 |
0 |
0.24610921628435 |
0.00000000000000 |
4 |
0 |
0.11410518209547 |
0.00000000000000 |
5 |
4 |
0.03260148059871 |
0.13040592239483 |
6 |
50 |
0.00571955799977 |
0.28597789998865 |
7 |
280 |
0.00059167841377 |
0.16566995585549 |
8 |
4000 |
0.00003259245500 |
0.13036981998314 |
9 |
50000 |
0.00000072427678 |
0.03621383888420 |
Total |
|
1.00000000000000 |
0.74863743710631 |
|
Pick 10
|
Catches |
Pays |
Probability |
Return |
0 |
0 |
0.04579070078903 |
0.00000000000000 |
1 |
0 |
0.17957137564325 |
0.00000000000000 |
2 |
0 |
0.29525678110572 |
0.00000000000000 |
3 |
0 |
0.26740236779386 |
0.00000000000000 |
4 |
0 |
0.14731889707162 |
0.00000000000000 |
5 |
1 |
0.05142768770500 |
0.05142768770500 |
6 |
22 |
0.01147939457701 |
0.25254668069420 |
7 |
150 |
0.00161114309853 |
0.24167146477914 |
8 |
1000 |
0.00013541935526 |
0.13541935526417 |
9 |
5000 |
0.00000612064883 |
0.03060324412750 |
10 |
100000 |
0.00000011221190 |
0.01122118951342 |
Total |
|
1.00000000000000 |
0.72288962208343 |
|
Pick 11
|
Catches |
Pays |
Probability |
Return |
0 |
0 |
0.03270764342073 |
0.00000000000000 |
1 |
0 |
0.14391363105123 |
0.00000000000000 |
2 |
0 |
0.26807441078170 |
0.00000000000000 |
3 |
0 |
0.27838496504254 |
0.00000000000000 |
4 |
0 |
0.17858658134804 |
0.00000000000000 |
5 |
0 |
0.07408035967030 |
0.00000000000000 |
6 |
8 |
0.02020373445554 |
0.16162987564429 |
7 |
80 |
0.00360780972420 |
0.28862477793623 |
8 |
400 |
0.00041141689837 |
0.16456675934961 |
9 |
2500 |
0.00002837357920 |
0.07093394799552 |
10 |
25000 |
0.00000105799787 |
0.02644994671019 |
11 |
100000 |
0.00000001603027 |
0.00160302707335 |
Total |
|
1.00000000000000 |
0.71380833470919 |
|
Pick 12
|
Catches |
Pays |
Probability |
Return |
0 |
0 |
0.02322716706690 |
0.00000000000000 |
1 |
0 |
0.11376571624603 |
0.00000000000000 |
2 |
0 |
0.23777034695421 |
0.00000000000000 |
3 |
0 |
0.27972981994613 |
0.00000000000000 |
4 |
0 |
0.20576280024883 |
0.00000000000000 |
5 |
0 |
0.09938731483717 |
0.00000000000000 |
6 |
5 |
0.03220885203057 |
0.16104426015283 |
7 |
32 |
0.00702738589758 |
0.22487634872249 |
8 |
200 |
0.00101959840032 |
0.20391968006364 |
9 |
1000 |
0.00009540101991 |
0.09540101991282 |
10 |
5000 |
0.00000542798906 |
0.02713994532003 |
11 |
25000 |
0.00000016727239 |
0.00418180975655 |
12 |
100000 |
0.00000000209090 |
0.00020909048783 |
Total |
|
1.00000000000000 |
0.71677215441618 |
|
Pick 13
|
Catches |
Pays |
Probability |
Return |
0 |
1 |
0.01639564734134 |
0.01639564734134 |
1 |
0 |
0.08880975643226 |
0.00000000000000 |
2 |
0 |
0.20661861700566 |
0.00000000000000 |
3 |
0 |
0.27273657444747 |
0.00000000000000 |
4 |
0 |
0.22728047870623 |
0.00000000000000 |
5 |
0 |
0.12587841897576 |
0.00000000000000 |
6 |
1 |
0.04750129017953 |
0.04750129017953 |
7 |
20 |
0.01231514930580 |
0.24630298611609 |
8 |
80 |
0.00218314010421 |
0.17465120833686 |
9 |
600 |
0.00025989763145 |
0.15593857887220 |
10 |
3500 |
0.00002006227331 |
0.07021795656818 |
11 |
10000 |
0.00000094336708 |
0.00943367083316 |
12 |
50000 |
0.00000002398391 |
0.00119919544489 |
13 |
100000 |
0.00000000024599 |
0.00002459888092 |
Total |
|
1.00000000000000 |
0.72166513257318 |
|
Pick 14
|
Catches |
Pays |
Probability |
Return |
0 |
1 |
0.01150142425437 |
0.01150142425437 |
1 |
0 |
0.06851912321754 |
0.00000000000000 |
2 |
0 |
0.17629399411180 |
0.00000000000000 |
3 |
0 |
0.25904423624590 |
0.00000000000000 |
4 |
0 |
0.24220636088992 |
0.00000000000000 |
5 |
0 |
0.15197261859760 |
0.00000000000000 |
6 |
1 |
0.06575738304704 |
0.06575738304704 |
7 |
9 |
0.01985128544816 |
0.17866156903346 |
8 |
42 |
0.00418163651802 |
0.17562873375666 |
9 |
310 |
0.00060823803898 |
0.18855379208507 |
10 |
1100 |
0.00005973766454 |
0.06571143099739 |
11 |
8000 |
0.00000381101528 |
0.03048812225484 |
12 |
25000 |
0.00000014784111 |
0.00369602775180 |
13 |
50000 |
0.00000000308404 |
0.00015420194010 |
14 |
100000 |
0.00000000002570 |
0.00000257003234 |
Total |
|
1.00000000000000 |
0.72015525515306 |
|
Pick 15
|
Catches |
Pays |
Probability |
Return |
0 |
1 |
0.00801614417729 |
0.00801614417729 |
1 |
0 |
0.05227920115624 |
0.00000000000000 |
2 |
0 |
0.14793901603787 |
0.00000000000000 |
3 |
0 |
0.24040090106154 |
0.00000000000000 |
4 |
0 |
0.25021318273752 |
0.00000000000000 |
5 |
0 |
0.17615008064721 |
0.00000000000000 |
6 |
0 |
0.08634807874863 |
0.00000000000000 |
7 |
10 |
0.02988971956684 |
0.29889719566835 |
8 |
25 |
0.00733144064847 |
0.18328601621172 |
9 |
100 |
0.00126716258122 |
0.12671625812169 |
10 |
300 |
0.00015205950975 |
0.04561785292381 |
11 |
2800 |
0.00001234249267 |
0.03455897948773 |
12 |
25000 |
0.00000064960488 |
0.01624012193972 |
13 |
50000 |
0.00000002067708 |
0.00103385391659 |
14 |
100000 |
0.00000000035046 |
0.00003504589548 |
15 |
100000 |
0.00000000000234 |
0.00000023363930 |
Total |
|
1.00000000000000 |
0.71440170198168 |
|
Computation of Probabilities
The probability of matching x numbers, given that y were chosen, is the number of ways to select x out of y, multiplied by the number of ways to select 20-x out of 80-y, divided by the number of ways to select 20 out of 80.
The “number of ways to select x out of y” means the number of ways, without regard to order, you can select x items out of y to choose from. I shall represent this function as combin(y,x) which you can use in Excel.
For the general case combin(y,x) is y!/(x!*(y-x)!). For those of you unfamiliar with the factorial function n! is defined as 1*2*3*…*n. For example 5!=120. The number of possible five card poker hands would thus be 52!/(47!*5!) = 2,598,960.
As an example let’s find the probability of getting 4 matches given that 7 were chosen. This would be the product of combin(7,4) and combin(73,16) divided by combin(80,20). combin(7,4) = 7!/(4!*3!)= 35. combin(73,16) = 73!/(16!*57!)=5271759063474610. combin(80,20) = 3535316142212170000. The probability is thus (35*5271759063474610)/3535316142212170000 =~ 0.052190967 .